
THE LOSS OF CO, IN EPOXYCHRYSANTHENONE UNDER ELECTRON IMPACT

Shizuko EGUCHI, Yasuto UCHIO, Akihiko MATSUO,
Mitsuru NAKAYAMA, and Shûichi HAYASHI
Department of Chemistry, Faculty of Science, Hiroshima University,
Higashisenda-machi, Hiroshima 730

Mass spectra of four kinds of bicyclic β,γ -epoxyketones containing gem-dimethyl group were examined. Epoxyvulgarone A and epoxychrysanthenone showed characteristic $[M-C_2H_3O]^+$ and $[M-CO_2]^+$ ions, while the remaining epoxyketones were abundant only in the $[M-C_2H_3O]^+$ ion. The ion kinetic energy-defocusing technique revealed that the loss of CO_2 from the molecular ion occurs via a lactone type intermediate.

We have recently isolated a novel sesquiterpene ketone, vulgarone A, from Chrysanthemum vulgare (L.) Bernhardi and determined the structure to be 2,6,6,9-tetramethyltricyclo[5.4.1.0 2 ,10]undec-8-en-11-one (1). la,b) In connection with the structural determination, epoxyderivatives of this ketone and three related ketones were prepared by treating with m-chloroperbenzoic acid to examine the mass spectra. Although mass fragmentations of α , β -epoxyketones have been reviewed by Budzikiewicz et al., 2) those of β , γ -epoxyketones have not been reported up to date.

The mass spectra of the epoxyketones are reproduced in Fig. 3) Among them, epoxyvulgarone A (2) and epoxychrysanthenone (3) showed in common two characteristic peaks of [M-43] and [M-44] ions with considerable intensities at m/e 191 (10%) and 190 (26%) and at m/e 123 (15%) and 122 (18%), although they were somewhat different in the relative intensities between both compounds. On the other hand, in the mass spectra of 2,4,4-trimethylbicyclo[3.1.1]heptan-2,3-epoxy-6-one (4),4) which is an

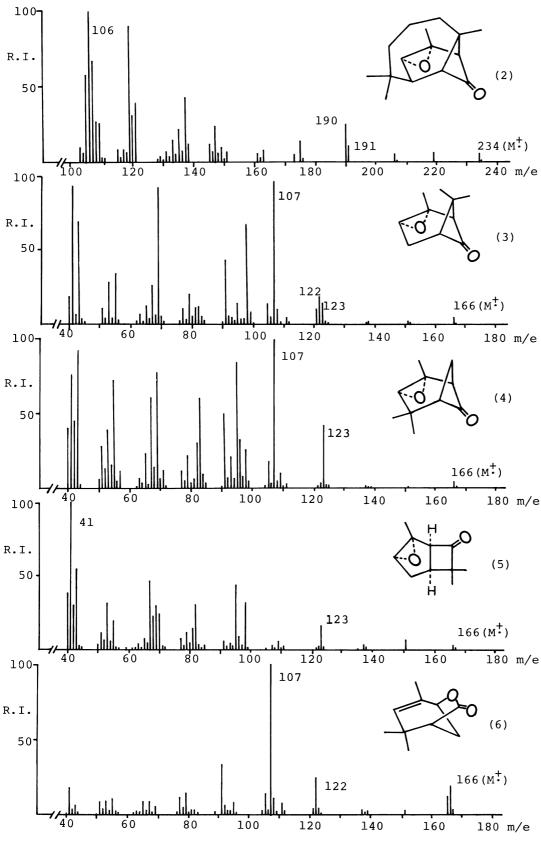


Fig.

isomer of epoxychrysanthenone differing only in the position of the gem-dimethyl group, and epoxyfilifolone (5), $^{5)}$ which has a carbon skeleton differing completely in the fused system, the [M-43] ions were comparatively abundant and the [M-44] ions were very weak. The elemental compositions of the ions were determined by high resolution mass measurements $^{3)}$ and they were characterized as $[M-C_2H_3O]^+$ and $[M-CO_2]^{\frac{1}{2}}$ ions. Furthermore, the metastable ions corresponding to the transition from the molecular ion to the $[M-CO_2]^{\frac{1}{2}}$ ion were respectively detected in compounds 2 and 3 as dish-topped metastable peaks centered at m* 154.5 (electric sector voltage ratio 2 (2) of 0.8125, calcd. m* 154.4; 2 0.8121) and m* 89.7 (2 0.7350, calcd. m* 89.8; 2 0.7352) by the ion kinetic energy-defocusing technique. 3 7,6,7) We were interested in the fact that 2 0 was directly lost from the molecular ion of such 2 0,7-epoxyketones as carbonyl and epoxy groups are located far a part.

It has been reported⁸⁾ that in the photochemical reaction the skeletal framework of 7-oxabicyclo[4.1.0]heptan-3-one, that is, a cyclic β , γ -epoxyketone, isomerized easily to an unsaturated γ -lactone. Furthermore, a photochemical reaction of epoxychrysanthenone gave filifolide A (6) in a high yield (82%), which showed an abundant peak due to the $[M-C_2]^{\frac{1}{2}}$ ion at m/e 122 and a very weak peak of the $[M-C_2H_3O]^{\frac{1}{2}}$ ion at m/e 123 as shown in Fig. in contrast to those of the other β , γ -epoxyketones ($\frac{4}{2}$ and $\frac{5}{2}$). Difference of spectral patterns between compounds $\frac{3}{2}$ and $\frac{6}{2}$ indicated that the former did not isomerize to the latter by electron impact, whereas the metastable ion corresponding to the transition from the molecular ion to the $[M-CO_2]^{\frac{1}{2}}$ ion was detected as a gaussian peak centered at m* 89.9 (γ =0.7355, calcd. m* 89.8; γ =0.7352) in the compound $\frac{6}{2}$. From these results, the loss of CO_2 in the β , γ -epoxyketones ($\frac{2}{2}$ and $\frac{3}{2}$) is considered to occur via a lactone type intermediate. Accordingly, the fragmentation pathway of the $[M-CO_2]^{\frac{1}{2}}$ ion on the compound $\frac{3}{2}$ under electron impact may be rationalized using a γ -lactone type intermediate as follow. The initial α -cleavage

of carbonyl group in the molecular ion gives ion (b). The ion thus produced, after being converted to ion (c) of a γ -lactone intermediate, releases ${\rm CO}_2$, yielding the ion (d), as the structures have already been reported⁹⁾ in a photochemical reaction of chrysanthenone. On the other hand, formation of the $[{\rm M-C}_2{\rm H}_3{\rm O}]^+$ ion (f) was thought to be produced by loss of CO followed by loss of a methyl radical from the ion (b) and/or by loss of a methyl radical and subsequent CO.

The intensities of $[M-CO_2]^{\frac{1}{2}}$ ions observed in the β , γ -epoxyketones may be attributable to the facility of formation of the lactone type intermediate. The structures of the compounds, $\underline{4}$ and $\underline{5}$, prevent respectively the formation by the neighboring gem-dimethyl group adjacent to epoxy oxygen and by trans-configuration of the epoxy oxygen and carbonyl group.

This is an interesting example showing the close connection between the mass fragmentation and the photochemical reaction.

References and Notes

- la) Y. Uchio, A. Matsuo, M. Nakayama, and S. Hayashi, Tetrahedron Lett., 1976, 2963.
- b) Y. Uchio, A. Matsuo, S. Eguchi, M. Nakayama, and S. Hayashi, ibid., 1977, 1191.
- 2) H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Mass Spectrometry of Organic Compunds," Holden-Day, San Francisco, 1970, p. 462.
- 3) The high resolution mass spectra were taken using an on-line system which combined a HITAC-10 computer with a Hitachi RMU-7L double focusing mass spectrometer: ionizing energy 70 eV, ionizing current 80 μ A, and accelerating voltage 3.2 kV. Relative intensities of fragment ions calculated based on ordinary mass spectra taken by a Hitachi RMS-4 mass spectrometer: ionizing energy 70 eV, ionizing current 80 μ A, and accelerating voltage 1.5 kV. The metastable ions were examined on the RMU-7L modified with a metastable defocusing attachment.
- 4) S. J. Torrance and C. Steelink, J. Org. Chem., 39, 1069 (1974).
- 5) W. F. Erman, J. Amer. Chem. Soc., 91, 779 (1969).
- 6) E. Tajima and J. Sieble, Int. Mass Spectrom. Ion. Phys., 3, 245 (1969)
- 7) M. Nakayama, S. Eguchi, A. Matsuo, and S. Hayashi, Shitsuryobunseki, <u>21</u>, 101 (1973).
- 8) R. K. Murray, Jun., and D. L. Goff, J. C. S. Chem. Comm., 881 (1973).
- 9) W. F. Erman, J. Amer. Chem. Soc., 89, 3928 (1976).

(Received June 20, 1978)